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Recently, Mickens and Gumel [1] studied the numerical solutions of a non-standard finite-
difference scheme [2] for the van der Pol differential equation

.xx þ x ¼ eð1� x2Þ ’xx; e > 0: ð1Þ
These results were compared to those obtained by use of the standard forward-Euler
method applied to the system equations form of equation (1), i.e.,

dx

dt
¼ y;

dy

dt
¼ �x þ eð1� x2Þy: ð2Þ

From the numerical work, it was found that the Euler method, for a given value of e; gave
periods for the limit-cycle behavior that increased as the step size, Dt ¼ h; increased. The
purpose of this note is to show mathematically that this is a general feature of the forward-
Euler scheme when used to numerically integrate equation (1).

The forward-Euler finite-difference scheme for equation (1) is [2]

xkþ1 � xk

h
¼ yk;

ykþ1 � yk

h
¼ �xk þ eð1� x2

kÞyk; ð3Þ

where h is the time step size Dt; tk ¼ hk; where k is an integer; and xk and yk are
approximations to the exact solutions of equation (1), i.e.,

xk ’ xðtkÞ; yk ’ yðtkÞ: ð4Þ

Note that if yk is eliminated, then the two first order difference equations become the
following single second order equation:

xkþ1 � 2xk þ xk�1

h2
þ xk�1 ¼ eð1� x2

k�1Þ
xk � xk�1

h

� �
ð5Þ

which can be rewritten in the form

xkþ1 � ð2þ ehÞxk þ ð1þ eh þ h2Þxk�1 ¼ ðehÞðxk�1Þ3 � ðehÞxkðxk�1Þ2: ð6Þ

In the calculations to come, it is assumed that the magnitudes of h and e satisfy the
inequality

05h{e{1: ð7Þ
The periodic solutions to equations (5) or (6) are to be studied by using the method of

harmonic balance as modified for non-linear, second order difference equations. The full
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details as to how this should be done is provided in the publication of Mickens [3]. To
proceed, the assumed approximation to the solution is taken as

xk ’ A cosðotkÞ; ð8Þ

where the amplitude A and angular frequency o are to be calculated by the following
procedure:

(1) The result of equation (8) is substituted into equation (6) and the resulting expression
is expanded into a finite number of trigonometric functions; doing this gives

H1ðA;o; e; hÞ cosðotkÞ þ H2ðA;o; e; hÞ sinðotkÞ
þ ðhigher order harmonicsÞ ¼ 0: ð9Þ

(2) Next, the coefficients H1 and H2 are set equal to zero, i.e.,

H1ðA;o; e; hÞ ¼ 0; H2ðA;o; e;HÞ ¼ 0; ð10Þ
and these two equations are solved for A and o in terms of e and h:

(3) The substitution of these values for A and o into equation (8) gives the required
approximation to the limit-cycle solution of equations (5) or (6).

To carry out the above procedure, the following trigonometric relations are useful:

sinðy1 � y2Þ ¼ sin y1 cos y2 � cos y1 cos y2; ð11aÞ

cosðy1 � y2Þ ¼ cos y1 cos y2 � sin y1 sin y2; ð11bÞ

ðcosyÞ3 ¼ 3
4
cos yþ 1

4
cos 3y; ðsin yÞ3 ¼ 3

4
sin y� 1

4
sin 3y; ð11c; dÞ

sin y1 cos y2 ¼ 1
2
sinðy1 þ y2Þ þ 1

2
sinðy2 � y1Þ: ð11eÞ

Also, it should be indicated that

xk�1 ’ A cosðotk � ohÞ: ð12Þ

After a large amount of both algebraic and trigonometric manipulation, H1 and H2 are
found to be the expressions

H1 	 2þ h2 þ eh � 3ehA2

4

� �� �
cos b� ð2þ ehÞ þ ðehA2Þ 2þ cosð2bÞ

4

� �
; ð13Þ

H2 	 h2 þ eh � 3ehA2

4

� �� �
sin bþ ehA2

4

� �
sinð2bÞ; ð14Þ

where

b 	 oh: ð15Þ

To further continue with the calculation, it must be understood that the approximation to
the solution of equation (6), as given by equation (8), is valid only to terms of order e [3].
Consequently, the angular frequency takes the form

o ¼ oðe; h;AÞ ¼ o0 þ eo1ðh;AÞ þ Oðe2Þ; ð16Þ

where it is indicated that o0 should not depend on h and A; while o1 does depend on them.
Further, it should be clear that o0 ¼ 1: This follows from the fact that in the limits [2]

h ! 0; k ! 1; hk ¼ t ¼ fixed; ð17Þ
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equation (5) reduces to the van der Pol differential equation and its first order perturbation
solution is [4]

xðtÞ ’ 2 cos t: ð18Þ

Setting H1ðA;o; e; hÞ and H2ðA;o; e; hÞ equal to zero and using the relations given in
equations (7) and (16), the following results are obtained, respectively, from H1 ¼ 0 and
H2 ¼ 0:

o1 ’ � hA2

8

� �
; A ’ 2: ð19a; bÞ

Thus, o1 ’ �ðh=2Þ and o is

o ’ 1� e
h

2

� �
: ð20Þ

Since the period is T ¼ 2p=o; it follows that to the same order of approximation

T ’ 2p 1þ eh
2

� �
; ð21Þ

and a first approximation to the (periodic) limit-cycle solution to equation (5) is

xk ’ 2 cos 1� eh
2

� �
tk

� �
: ð22Þ

An examination of equation (21) shows, under the conditions given in equation (7), that
the period increases with an increase in the magnitude of the step size. This is precisely the
result found by Mickens and Gumel [1] in their numerical integration of the van der Pol
differential equation using the forward-Euler method on the system form of this equation,
i.e., see equation (3). While this property was derived as a result of the application of a
perturbation procedure, it may be expected to have a more general validity. This follows
from the observation that perturbation results often provide the correct qualitative
behavior of a phenomena even when the expansion parameter is large [4].

The above discussion also indicates that the period of the limit cycle of the van der Pol
differential equation, determined from (5) or (6), takes the form

Tðe; hÞ ¼ Tðe; 0Þ þ h %TTðe; hÞ; ð23Þ

where Tðe; 0Þ is the period function calculated using perturbation theory [4]. The second
term, on the right side, is the contribution coming from the influence of the finite
magnitude of the step size, h ¼ Dt: Consequently, for any non-zero value of the step size,
the period determined from the numerical solution will differ from the actual period of
oscillations of the original van der Pol differential equation. This is a fundamental
difficulty that plagues all numerical integration techniques.

In summary, a mathematical explanation has been provided to explain the numerically
derived behavior of the period for the van der Pol differential equation integrated using a
forward-Euler method.
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